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SUMMARY

A major challenge of the post-genomics era is to
define the connectivity of protein phosphorylation
networks. Here, we quantitatively delineate the insu-
lin signaling network in adipocytes by high-resolution
mass spectrometry-based proteomics. These data
reveal the complexity of intracellular protein phos-
phorylation. We identified 37,248 phosphorylation
sites on 5,705 proteins in this single-cell type, with
approximately 15% responding to insulin. We inte-
grated these large-scale phosphoproteomics data
using a machine learning approach to predict physi-
ological substrates of several diverse insulin-
regulated kinases. This led to the identification of
an Akt substrate, SIN1, a core component of the
mTORC2 complex. The phosphorylation of SIN1 by
Akt was found to regulate mTORC2 activity in
response to growth factors, revealing topological
insights into the Akt/mTOR signaling network. The
dynamic phosphoproteome described here contains
numerous phosphorylation sites on proteins involved
in diverse molecular functions and should serve as a
useful functional resource for cell biologists.

INTRODUCTION

Insulin plays a major role in controlling metabolic homeostasis,

cellular growth, proliferation, and survival, and defects in

the mechanisms underlying these processes contribute to a

range of diseases including type 2 diabetes, cardiovascular

disease, and cancer. Protein phosphorylation plays a major

role in almost all insulin-regulated processes. As a member of

the receptor tyrosine kinase (RTK) family, the insulin receptor

engages the canonical phosphoinositide-3 kinase (PI3K)/

Akt (Manning and Cantley, 2007) and mammalian target of

rapamycin (mTOR) pathways (Zoncu et al., 2011), which

together coordinate many of insulin’s actions. These pathways

are a major convergence point for many RTKs, and hyperacti-

vation of the PI3K-Akt and mTOR pathways occur in many

human tumors (Laplante and Sabatini, 2012; Yuan and Cantley,

2008).
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The mTOR-regulated phosphoproteome was recently investi-

gated using quantitative mass spectrometry (MS). By examining

the sensitivity to the mTOR inhibitors Torin1, rapamycin, and Ku-

0063794, the mTOR network in HEK293 cells and Tsc2�/�

mouse embryonic fibroblasts (MEFs) was assessed to a depth

of 4,251 and 7,255 phosphosites, respectively (Hsu et al.,

2011; Yu et al., 2011). Surprisingly, few studies have examined

the diversity of the Akt network on a global scale. It is reported

that Akt phosphorylates in excess of 100 substrates; however,

many of these sites were identified using targeted approaches.

Moreover, the extent to which hormones such as insulin rely

on signaling nodes other than the canonical PI3K/Akt pathway

for their physiologic functions remains uncertain. Therefore, to

obtain a more complete view of the PI3K/Akt network, it would

be desirable to take an unbiased approach using quantitative

MS. To delineate the complexity of the insulin signaling network,

we generated dynamic maps of the insulin-regulated phospho-

proteome in insulin-responsive 3T3-L1 adipocytes. To investi-

gate the role played by the key insulin-regulated kinases Akt

and PI3K, we combined these approaches with pharmacological

inhibitors targeting these signaling nodes. This revealed a com-

plex single-cell phosphorylation network comprising 37,248

phosphorylation sites on 5,705 proteins, 15% of which were in-

sulin regulated. There was considerable diversity in the temporal

pattern of phosphorylation among different insulin-responsive

targets. We demonstrate the utility of these large phosphopro-

teome data sets for the identification of insulin-regulated phos-

phorylation sites by developing and applying a general in silico

machine learning approach to systematically predict kinase-

substrate relationships. This strategy builds upon existing

methods based on identification of kinase consensus motifs

(Linding et al., 2008; Obata et al., 2000; Obenauer et al., 2003)

or chemical-genetic approaches (Blethrow et al., 2008; Chi

et al., 2008) while overcoming problems associated with con-

sensus motif redundancy and preserving the specificity and

context of the cellular environment.

RESULTS

Quantification of the Adipocyte Phosphoproteome
To characterize the insulin signaling network we applied two

distinct quantitative phosphoproteomics strategies using stable

isotope labeling with amino acids in cell culture (SILAC) (Ong and

Mann, 2006). In the first set of experiments, we quantified the
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Figure 1. Quantification of the Insulin-Regulated Phosphoproteome using Tandem Mass Spectrometry

(A) Experimental design of inhibitor screens.

(B) Experimental design of temporal phosphoproteome screen.

(C) Workflow for the proteome and phosphoproteome analysis.

(D) Summary of the quantified phosphoproteome and proteome.

(E) Efficiency of phosphopeptide enrichment for a representative experiment. Above each bar is the percent of the total identified peptides in each fraction that

were phosphorylated.

(F) Quantitative reproducibility for a representative experiment of one of the large-scale MS studies. See also Figures S1 and S2 and Tables S1, S2, and S3.
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insulin-regulated phosphoproteome using two potent and selec-

tive kinase inhibitors targeting Akt (MK2206) and PI3K/mTOR

(LY294002) (Figure 1A). In the second series of experiments we

employed a multiplexed SILAC approach to interrogate the tem-

poral profile of insulin signaling over a wide temporal dynamic

range spanning 15 s to 60 min (Figure 1B). All MS experiments

were performed in triplicate. We achieved high confidence and

deep coverage of the phosphoproteome by analyzing a large

number of phosphopeptide-enriched fractions and by taking

advantage of recent developments in MS hardware (Michalski

et al., 2011) and software (Cox and Mann, 2008; Cox et al.,

2011) (Figure 1C). In total, 7,441,138 high-resolution (Orbitrap

higher-energy collision dissociation [HCD]) spectra were

acquired, resulting in the identification of 38,901 unique phos-
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phopeptides corresponding to 37,248 phosphorylation sites on

5,705 proteins (Figure 1D and Tables S1 and S2), placing this

among the largest phosphoproteomes reported. Phosphopep-

tide identification confidence was high, with 95% of all peptides

identified having an absolute mass deviation less than 2 ppm

(Figures S1A and S1B).

Our phosphopeptide enrichment was highly efficient and

selective, since phosphopeptides consisted of an average of

83% of the total peptides identified from the phosphopeptide-

enriched samples (Figure 1E) and reproducibility of phospho-

peptide quantitation between biological replicates was good

(Figure 1F). Single-, double-, triple-, and higher-phosphorylated

peptides represented 72%, 23%, 4% and <1% of the total

phosphopeptides, respectively (Figure S1C). Based on the
rs



Figure 2. Dynamic Range and Enrichment of GO Terms in Adipocyte Proteome and Phosphoproteome
(A) Abundance of detected proteome was estimated using the summed peptide intensities of each protein, and proteins were ranked by abundance and divided

into four quartiles. Enrichment of protein GO terms (biological process and cellular component) in each protein abundance quartile was assessed by Fisher’s

exact test (FDR < 0.01 following Benjamini-Hochberg correction). The position of GO terms along the horizontal axis represents enrichment of these terms within

the respective protein abundance quartile.

(B) Frequency and significance of enrichment or de-enrichment of GOCC terms in the proteome and phosphoproteome (Fisher’s exact test, FDR < 0.01 after

Benjamini-Hochberg correction). See also Table S4.
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peptide-spectral match and the number of potential phos-

phorylation sites in each peptide, MaxQuant derived a phos-

phorylation site localization probability score (Olsen et al.,

2006). We divided the phosphoproteome into four categories

based on this probability score: class I (>0.75), class II

(0.75–0.5), class III (0.5–0.25), and class IV (<0.25). Importantly,

due to the 1% false discovery rate (FDR) applied at the peptide

(peptide-spectral matching), protein (protein group assembly),

and site (posttranslational modification [PTM] assignment) levels

(Cox and Mann, 2008), the probability that all peptides are phos-

phorylated is greater than 99%. Using this classification, 63% of

the sites in our phosphoproteome were accurately localized

(class I, Figure S1D) (median localization probability for all sites

was 0.96). Assessment of class I phosphopeptides revealed a

distribution of 87.8% phosphoserine, 11.4% phosphothreonine,

and 0.8% phosphotyrosine (Figure S1D) residues, which is

similar to previously reported phosphorylated amino acid distri-

butions (Olsen et al., 2006).

A Ranked Abundance Atlas of Adipocyte Protein
Expression
In parallel with the phosphoproteome studies, we retained a frac-

tion of the peptides for total proteome analysis by MS following

strong anion exchange chromatography (Figure 1C) (Wi�sniewski

et al., 2009), allowing us to place identified phosphoproteins in

the context of the adipocyte proteome. Combinedwith the phos-

phoproteome data, we identified a total of 8,676 proteins in 3T3-

L1 adipocytes with amedian peptide sequence coverage of 23%

(Figure 1D). Utilizing the normalized peptide intensities derived

from summation of measured peptide-extracted ion chromato-

grams (intensity-based absolute quantification [iBAQ]) (Schwan-

häusser et al., 2011), we quantified and ranked the abundance of
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the 3T3-L1 adipocyte proteome (Table S4 and Figure 2A). These

data revealed that this cell line is highly specialized in metabolic

processes andmay have preservedmanymetabolic functions of

the tissue of origin. In addition to metabolic enzymes, two fatty

acid binding proteins (FABP4 and FABP5) were among the top

10 most abundant proteins in the adipocyte, comparable in

expression level to the core nucleosome proteins H4 and H2B

(Table S4). Hence, this compendium of ranked protein abun-

dance should serve as a useful resource for cell biologists.

Comparative Analysis of Proteome and
Phosphoproteome in 3T3-L1 Adipocytes
Comparison of the proteome and phosphoproteome revealed an

overrepresentation of phosphoproteins associated with the

cytoskeleton, plasma membrane (PM), and nucleus, consistent

with the importance of phosphorylation as a key functional

modulator at these locations (Figure 2B). Enrichment of phos-

phoproteins in the PM might be anticipated since this compart-

ment is a hub for protein signaling. Surprisingly, such enrichment

has not been observed in previous studies, with one study

showing an underrepresentation of plasma membrane proteins

(Olsen et al., 2006). It was proposed that this occurred due to

insufficient phosphoproteome coverage to sample low-abun-

dance membrane proteins. The enrichment of these proteins in

our data set reflects the absence of bias against low-abundance

PM proteins and a substantial depth of coverage likely achieved.

In contrast, there was a relative paucity of phosphoproteins

associated with mitochondria and lysosomes. These data

suggest that protein kinases likely have connectivity with a

broader range of substrates at the PM and nucleus compared

with these other locations. Moreover, since the lysosomal sur-

face is a well-known signaling hub for mTOR and extracellular
etabolism 17, 1009–1020, June 4, 2013 ª2013 The Authors 1011



Figure 3. Quantification of Insulin/PI3K/Akt-Sensitive Phosphoproteomes

(A) Distribution of all quantified phosphopeptides in inhibitor screens and insulin-responsive sites (purple). Known Akt-mediated (blue box) and mTOR-mediated

(pink box) phosphosites regulated by insulin. Phosphosites are annotated as PI3K/mTOR- (orange squares) or Akt (red triangles)-dependent if their insulin-

mediated phosphorylation was reversed by >40%.

(B) PI3K- and Akt-regulated components of the insulin-regulated phosphoproteome. A subset of these were considered PI3K regulated if they were inhibited by

LY294002 by more than the indicated thresholds and Akt regulated if they were also inhibited by MK2206.

(C) Sequence logos for phosphorylation sites that were insulin regulated.
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signal-regulated kinase (ERK) (Bar-Peled and Sabatini, 2012),

this finding raises the possibility that resident lysosomal proteins

are not the principal substrates for these kinases at this location.

To further assess the phosphoproteome coverage of our data,

we mapped the proteins found to contain phosphorylation sites

onto the ranked proteome abundance (Figure 2A). We observed

good coverage of proteins spanning the entire abundance of

the measured proteome, with a relative enrichment of low-

abundance proteins (p = 8.5 3 10�8, Wilcoxon rank-sum test).

Of course, phosphorylation is not limited to single sites within a

protein, so even with near-exhaustive coverage of phosphory-

lated proteins, there will likely be many phosphorylation sites

that remain out of reach with the current technology or that are

only present at measurable stoichiometry following unique

cellular stimulus.

Comparison with In Vivo Mouse Phosphoproteome
We next compared our data set with a study performed in nine

mouse tissues (Huttlin et al., 2010). We observed considerable

overlap of the identified phosphoproteomes among our study

and themouse tissue study. Our study identified 66% of the total

mouse tissue phosphoproteins (Figure S2A) and 90% of the

phosphoproteins from brown adipose tissue. Combining the

data from these two studies alone identified 57,644 phosphory-

lation sites on over 7,800 proteins (Figure S2B). Phosphosites

identified from brain, spleen, and heart were de-enriched in our

study, while those from insulin target tissues (liver, pancreas,

and brown adipose tissue) were most enriched. This suggests

that cells from these tissues may share a subset of common

phosphoprotein machinery and emphasizes the cell-type-

specific nature of protein phosphorylation.
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We identified several phosphorylation sites known to be

important to the actions of insulin and growth factor signaling

in general, such as the activating T loop phosphorylation site of

Akt (T308) and the hydrophobic motif (HM) of Akt1 (S473) not

identified in the mouse tissue phosphoproteome study. The

detection of these and other phosphorylation sites in our data

highlights the importance of system perturbations using growth

factors or other stimuli to activate signaling networks when

studying the phosphoproteome. Under resting or starved condi-

tions, the stoichiometry of many growth factor-regulated phos-

phorylation sites is known to be low, making their detection

unlikely if not impossible.

The PI3K/Akt/mTOR Network
In the studies using PI3K and Akt inhibitors, we quantified 19,507

unique phosphorylation sites on 4,065 proteins (FDR < 1%;

Figure 3A), and around 15% of the sites quantified in either

screen were regulated by insulin (Figure 3A). Many of the

insulin-regulated sites belong to the PI3K/Akt/mTOR pathway,

and phosphorylation of most of these substrates was inhibited

by MK2206 and LY294002, reflecting that these inhibitors target

sequential proximal steps in the canonical insulin signaling

pathway.

Applying a threshold of 2.5 median absolute deviations to the

log2-transformed data (roughly equating to a 2-fold change in

this data set) revealed 3,152 positively regulated and 1,574

negatively insulin-regulated phosphorylation sites on 1,285 and

830 proteins, respectively (Figure 3A). To compare phosphoryla-

tion affected by the PI3K/mTOR and Akt inhibitors, we filtered

class I phosphorylation sites that were quantified in at least

one biological replicate from each of the screens, and for
rs



Figure 4. Dynamic Quantitative Analysis of Akt/mTOR Networks

(A) Immunoblot analysis of adipocytes following different insulin-stimulated time points for proteins known to belong to the Akt (blue) and mTOR (pink) pathways.

(B and C) Temporal profiles generated from SILAC-MS data for known direct Akt (B) and mTOR (C) substrates.

(D) Network model depicting the activation of Akt, mTORC1, and mTORC2 by growth factors. See also Figure S3.
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increased robustness we filtered the data such that phosphory-

lation sites had to be regulated in the same direction in both

inhibitor screens. This revealed that over 50% of the insulin-

regulated phosphoproteome was blocked by the PI3K/mTOR

inhibitor (Figure 3B and Table S1), confirming the dominance

of these pathways in insulin action. We iteratively explored

multiple stringencies for PI3K-Akt inhibition and observed that,

regardless of the filtering stringency utilized, the Akt inhibitor

blocked around 67% of the insulin-regulated, PI3K-sensitive

phosphorylation sites, suggesting that the majority of PI3K-

mediated growth factor signaling is coordinated through Akt-

dependent mechanisms.

Site-Specific Motifs Enriched in the Insulin-Regulated
Phosphoproteome
Enrichment of amino acids surrounding the phosphorylated

residues can be useful in revealing the broad classes of kinases

that are active in the context of the sample analyzed (Colaert

et al., 2009). Among the insulin-stimulated phosphorylation sites,

we found a significant (p < 0.01) overrepresentation of proline-

directed and basophilic-containing motifs and, correspondingly,

fewer acidophilic sequences (Figure 3C). Proline-directed

sites are phosphorylated by several kinases, including mTOR,

mitogen-activated protein kinases (MAPKs), and cyclin-

dependent kinases (CDKs), while basophilic sequences are

phosphorylated by the AGC kinases Akt, serum and glucocorti-

coid-induced kinase (SGK), p70S6K, and p90S6K, among

others. Many of these kinases are regulated by growth factors,

so enrichment of these motifs in the insulin-regulated phospho-

proteome is expected. Acidophilic kinases include casein

kinases 1 and 2. The de-enrichment of these sequences in the

insulin-regulated phosphoproteome indicates that acidophilic

kinases are constitutively active in adipocytes.
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The consensusmotifs for insulin-regulated, PI3K/mTOR-regu-

lated, and Akt-regulated phosphorylation sites were found to be

remarkably similar, with only modest differences between these

classes of phosphosites (Figure 3C). For example, Akt-stimu-

lated phosphorylation sites appear to have a greater preference

toward threonine and serine residues in the +1 and +2 positions,

respectively, when compared with PI3K/mTOR-stimulated sites.

This similarity likely reflects the dominance of Akt and associated

AGC kinases as downstream components of the PI3K/mTOR

pathways and the tight connectivity of these signaling networks.

Temporal Clustering of the Insulin-Regulated
Phosphoproteome
We next investigated the dynamics of insulin-regulated phos-

phorylation (Figure 1B). We initially focused on temporal profiles

of phosphorylation sites known to belong to pathways regulated

by Akt and mTORC1 since, according to the data from our

inhibitor screens, the PI3K-Akt/mTOR axis accounts for over

half of the insulin-regulated phosphoproteome. We observed

segregation in the temporal profiles of phosphorylation sites

belonging to these two pathways (Figure 4A), with Akt

substrates phosphorylated rapidly, reaching a maximum within

1 min of insulin stimulation (Figure 4B). In contrast, mTORC1

substrateswere phosphorylated substantially slower (Figure 4C).

This latency may reflect differences in the molecular mecha-

nisms governing activation of the kinases regulating

these pathways (Figure 4D) or spatial differences in kinase and

substrate localization.

To classify the temporal patterns of phosphorylation in an

unbiased manner, we performed unsupervised clustering (fuzzy

c-means) (Futschik and Carlisle, 2005) of the time course data.

Approximately 50% of the temporal phosphorylation patterns

showed a sustained increase with insulin, while the remainder
etabolism 17, 1009–1020, June 4, 2013 ª2013 The Authors 1013



Figure 5. Temporal Phosphorylation in Response to Insulin Reveals Signaling Network Topology

Data from the literature were used to construct a cell signaling network. Proteins identified in this study were annotated with their respective insulin-dependent

phosphorylation sites color coded according to the temporal patterns derived from unsupervised clustering (fuzzy c-means), shown at the right. Complete

clusters (A–R) are shown in Figure S3 and listed in Table S2. See also Figures S4 and S5.
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were either transient or decreased (Figure S3). To investigate the

utility of these temporal data for identifying the proximity of

signaling components, we constructed a network comprising

over 100 well-described phosphorylation sites and overlaid the

unsupervised clustering results (Figure 5). Examination of this

network reveals functional temporal clusters reflecting signaling

connectivity between the nodes. For example, upstream ele-

ments such as the tyrosine-phosphorylated insulin receptor

and IRS1, as well as Akt regulatory sites, were found in the

most rapid cluster (cluster A), while MEK1/MEK2-mediated acti-
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vation of ERK1 and ERK2 (cluster C) and the ERK substrate

p90RSK (cluster J) were slower (Figure 5).

Interestingly, all well-characterized Akt substrates were found

in the fastest clusters (A and B), together with the activation sites

of Akt (T308 and S473), while p70S6K and its substrate (S6) were

found together in slower clusters (clusters D–F) (Figure 5). This

suggests that kinase activation alone is the rate-limiting step

for substrate phosphorylation and that in vivo substrate phos-

phorylation kinetics could be used as a powerful predictor for

identifying previously unknown, physiological kinase-substrate
rs
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relationships. This is exemplified by phosphorylation of Bcl2

antagonist of cell death (BAD), since BAD contains both Akt

(S99, cluster B) and p90RSK (S75, cluster D) phosphorylation

sites (Figure 5). Given that Akt is found in the most rapid cluster,

one explanation for this temporal specificity is that Akt-depen-

dent phosphorylation confers conformational changes within

substrates, thereby promoting access to other kinases; alterna-

tively, differential subcellular localization of substratesmight limit

the kinetics of phosphorylation. The rapid phosphorylation of Akt

substrates at distal cellular locations (e.g., forkhead box-O

[FOXO]), however, argues against this. Another possibility is

that this occurs due to carefully tuned, intrinsic-specific activities

of each kinase toward different substrates. The deregulation of

this finely tuned specificity (due, for example, to hyperactive or

upregulated kinase expression, as is often observed in tumors

[Yuan and Cantley, 2008; Zoncu et al., 2011]) may therefore

explain how dysregulated signaling can lead to uncontrolled tu-

mor growth and proliferation. Hence, temporal information is

likely to be a revealing determinant of network connectivity.

Predicting Kinase Substrates from Integrated Global
Phosphoproteomics Data
Amajor challenge in studying protein phosphorylation is defining

physiological kinase-substrate relationships. This is difficult in

light of the loss of sequence specificity that occurs for many

kinases in vitro. For example, the evolutionarily related AGC

kinases Akt and p70S6K phosphorylate substrates with indistin-

guishable motifs in vitro (Manning and Cantley, 2007), yet our

temporal data clearly segregate known Akt and S6K substrates.

Due to the substantial resolution of these closely related kinases,

we sought to utilize our phosphoproteomics data to develop an

integrative method of enhanced kinase-substrate prediction. To

achieve this, we applied a machine learning approach utilizing

support vector machines (SVMs) (Ben-Hur et al., 2008) and

curated positive training sets from the literature (Tables S2 and

S3) to sensitively predict cognate kinase-substrate relationships

using the combined data from both of our large-scale phospho-

proteomics screens (Figure S4A). Regarding selection of positive

training sets, substrates for which there were multiple lines of

evidence from different sources were given preference. We

reasoned that careful selection of true positives for the training

sets was critical due to the reduced specificity that many protein

kinases may have displayed under in vitro assay conditions.

Residual phosphorylation sites from the remaining data set

were treated as negative examples (see Supplemental Experi-

mental Procedures).

Kinase-substrate prediction classifiers were trained for Akt,

mTORC1, and PKA, since these kinases collectively represent

a wide range of the actions of insulin and are implicated in a

diverse range of biological processes of broad significance.

Features used for classification were selected to describe three

diverse characteristics of each substrate: (1) the amino acid

sequence surrounding the phosphorylated residue, (2) the

response of the phosphosite to the PI3K/mTOR and Akt inhibi-

tors (compared with insulin alone), and (3) the temporal profile

of phosphorylation in response to insulin (Figures S3 and S4B).

Using this approach, we generated a normalized prediction

score for Akt, mTORC1, and PKA for each phosphorylation site

that was quantified in the time course data set (Table S2). A delta
Cell M
score was also calculated to determine whether the prediction

score for a specific substrate was substantially higher for

another kinase. We then used a Pareto ranking approach to

objectively incorporate both ensemble prediction scores and

delta scores for prioritizing and ranking potential Akt, mTORC1,

and PKA substrates for follow-up molecular characterization

(Figure S5A and Table S2). The average temporal profiles of

the top 50 ranked predictions for each kinase closely resemble

the established profiles of known substrates (Figure S5B),

and the estimated sensitivity and specificity of the approach

(Figure S5C) indicated that the SVMs are successfully predicting

substrates based on their temporal characteristics.

Insulin Regulates Diverse Cellular Processes through
Convergence on Common Targets
While the high-ranking Akt, mTORC1, and PKA predictions from

ourmachine learning approach includedmany known substrates

for each kinase, there were also many phosphorylation sites not

previously recognized as part of the insulin signaling network.

Many of these previously unrealized phosphorylation sites likely

represent previously unrealized actions of insulin. For instance,

putative mTORC1 sites in Ulk1 and Ulk2, the ubiquitin-specific

processing protease 32 (Usp32), the La ribonucleoprotein

domain family member 4B (Larp4B), the poly(rC)-binding protein

1 (Pcbp1), and topoisomerase II homolog 1 (Patl1) (Figure S5A

and Table S2) suggest possible mechanisms of regulation of

autophagy, ubiquitin-dependent protein turnover, and mes-

senger RNA (mRNA) stability. Moreover, we found phosphoryla-

tion sites on Patl1 and Larp4B that were predicted to be PKA

substrates (Figure S5A). This points tomRNA turnover as amajor

determinant of insulin-regulated cellular growth and demon-

strates that insulin regulates cellular processes by coordinated

control of numerous signaling pathways that converge on com-

mon targets. Consistent with this, Akt phosphorylation of

Enhancer of mRNA-decapping protein 3 (Edc3) and butyrate

response factor 1 (Brf1) regulate mRNA stability in mammalian

cells (Larance et al., 2010; Schmidlin et al., 2004) (Figures 5

and S5A). Other predicted substrates imply nascent areas of

mTOR biology, including vesicle trafficking and endocytosis via

the Rab effector Micall1, the Rab guanine nucleotide exchange

factor Dennd4C, and the Rab binding protein Plekhm1, as well

as uncharacterized sites on a-Raf and c-Raf, which may point

to crosstalk between mTOR and MAPK signaling pathways.

Candidate Akt substrates include butyrate response factor 2

(Brf2), an mRNA-binding protein that promotes mRNA deadeny-

lation and degradation. A homologous site on Brf1 is a known Akt

substrate (Schmidlin et al., 2004), supporting our prediction that

Brf2 is likely an Akt substrate. Other putative Akt substrates are

the insulin receptor substrates 1 and 2 (IRS1/IRS2), Stress-

activated map kinase-interacting protein 1 (SIN1), and etopo-

side-induced 2.4 kb transcript (EI24) (Figure S5A). EI24 is a

p53-induced DNA damage response gene involved in growth

suppression and apoptosis, located on a region in the human

genome most consistently deleted in solid tumors (11q23)

(Gu et al., 2000). We verified the phosphorylation of EI24 in

HEK293 cells and showed that this was blocked by MK2206,

but not by rapamycin (data not shown). The potential regulation

of EI24 by Akt is of considerable interest, as it may represent

a mechanism by which Akt mediates cell survival and apoptosis,
etabolism 17, 1009–1020, June 4, 2013 ª2013 The Authors 1015



Figure 6. Akt Is the Physiological Kinase for SIN1 T86, and its Phosphorylation Directly Regulates mTORC2 Activity

(A) SIN1 domain structure and sequence homology of the region surrounding T86. TORC, putative mTORC-binding domain; CC, coiled-coil domain; CRIM,

conserved region in the middle domain; RBD, Raf-like Ras-binding domain; PH, pleckstrin homology domain. Enlarged is the region containing the insulin-

responsive phosphorylation site, T86. Residues surrounding several other known Akt substrates (AS160 T642, FOXO1A S256, TSC2 S939 and BAD S99) are

shown.

(B) Endogenous SIN1 is rapidly phosphorylated in response to insulin and blocked by pretreatment with the Akt inhibitor MK2206. 3T3-L1 adipocytes were serum

starved, treated with MK2206 (MK; 10 mM, 30 min), and stimulated with insulin (100 nM) for the indicated times, and samples were assessed by immunoblotting.

(C) Insulin-stimulated phosphorylation of endogenous SIN1 T86 is blocked by MK2206 and GDC-0068, but not by rapamycin. HEK293 cells were serum starved

overnight, treated with MK2206 (MK; 10 mM and 1 mM), GDC-0068 (GDC;10 mM), or rapamycin (50 nM) followed by insulin (200 nM, 10 min), and samples were

analyzed by immunoblotting.

(D) Akt in vitro kinase assay performed using recombinant GST-Akt results in specific phosphorylation of SIN1 at T86 and is blocked by GDC-0068 (GDC*; 10 mM)

added to the in vitro kinase reaction.

(E) Expression of SIN1, but not SIN1 T86A mutant, in SIN1�/� MEFs rescues mTORC2-dependent signaling. SIN1 WT or phosphomutants (T86A, T86E) were

expressed in SIN1�/� MEFs, and cells were selected by FACS. Cell lines were serum starved and stimulated with insulin, and samples were analyzed by

immunoblotting.

(legend continued on next page)

Cell Metabolism

Dynamic Adipocyte Phosphoproteome

1016 Cell Metabolism 17, 1009–1020, June 4, 2013 ª2013 The Authors



Cell Metabolism

Dynamic Adipocyte Phosphoproteome
an important finding in light of the clear role of Akt in the context

of cellular proliferation and cancer.

Identification of SIN1 as a Direct Akt Substrate that
Regulates mTORC2 Activity
One predicted Akt substrate of particular interest was SIN1,

an indispensible subunit of mTORC2 (Figure 4D) required for

complex assembly and mTORC2 kinase activity (Jacinto et al.,

2006). We identified rapid phosphorylation of SIN1 on T86 in

response to insulin in our MS-based proteomics experiments

(cluster A; Figure 5) along with Akt (T308) and numerous Akt

substrates (area under curve [AUC] = 0.86; Figure S4B). SIN1

T86 is located in a highly conserved region of the protein (Fig-

ure 6A). We verified the phosphorylation of SIN1 T86 by gener-

ating a phosphospecific antibody and confirmed that SIN1 T86

phosphorylation in response to insulin occurred on a timescale

similar to that of Akt S473 and Akt substrates AS160 and

GSK3 in 3T3-L1 adipocytes and HEK293 cells. However, phos-

phorylation of SIN1 was temporally distinct from S6K and the

S6K substrate S6 (Figures 6B and S6A); it was inhibited dose

dependently by the allosteric Akt inhibitor MK2206 and blocked

by the ATP-competitive Akt inhibitor GDC-0068, but not by the

mTORC1 inhibitor rapamycin (Figures 6B and 6C). Moreover,

Akt phosphorylated SIN1 T86 in vitro, and this phosphorylation

was blocked by GDC-0068 (Figure 6D). Together, these findings

confirm that Akt is the physiological kinase of SIN1 T86.

We predicted that Akt-mediated phosphorylation of SIN1

might be involved in regulating the activity of mTORC2 because

its phosphorylation occurred on a timescale that would support

such a function relative to Akt S473 phosphorylation, and PI3K

inhibition impairs the activation of mTORC2 (Frias et al., 2006).

One way in which SIN1 T86 might regulate mTORC2 is by

affecting formation of the complex, since SIN1 is essential for

mTORC2 complex stability (Jacinto et al., 2006). To test this,

we expressed wild-type (WT) or phosphomutant (T86A) SIN1 in

SIN1�/� MEFs and selected for cells expressing SIN1 similar to

endogenous levels. We found that SIN1 T86A was equally

capable of forming mTORC2, since immunoprecipitation of

Rictor copurified both the phosphomutant andWT SIN1 equally,

suggesting that formation and stability of the complex was not

impaired (Figure S6B). In contrast, insulin-dependent phosphor-

ylation of Akt S473 was blunted in SIN1 T86A cells, but not in

SIN1 WT cells (Figure 6E), suggesting that phosphorylation of

SIN1 T86 by Akt directly regulates mTORC2 activity. Consistent

with this, substitution of the phosphorylated residue with a

phosphomimetic (T86 to glutamic acid, T86E) restored growth

factor-dependent mTORC2 signaling (Figures 6E and S6C).

In addition to S473, Akt is also phosphorylated at an additional

site (T450) by mTORC2. Consistent with this, Akt T450 phos-

phorylation was abolished in SIN1�/� cells (Facchinetti et al.,

2008) (Figure 6E). Intriguingly, while SIN1 WT and SIN1 T86E

completely rescued Akt T450 phosphorylation, this was not the

case for SIN1 T86A; however, this diminution was not as marked
(F) In vitro kinase activity of endogenousmTORC2 isolated from cells is enhanced

MK2206 (MK; 10 mM), but not rapamycin (R; 50 nM). LY294002 (LY*; 15 mM) was

(G) mTORC2 isolated from SIN1�/� MEFs reconstituted with SIN1 WT or phosp

activity in in vitro kinase assay, with enhanced mTORC2 activity isolated from T8

(H) Model depicting growth factor-dependent activation of mTORC2 mediated b

Cell M
as that observed for Akt S473 phosphorylation. Collectively, this

suggests that mTORC2 has differential substrate sensitivities for

T450 versus S473 of Akt in vivo, and phosphorylation of SIN1 on

T86 potentiates mTORC2 activity toward these sites. Con-

sequently, ablation of SIN1 phosphorylation at T86 has a greater

effect on S473 phosphorylation and, in turn, Akt activation.

We next tested whether Akt directly regulates mTORC2

activity in response to growth factors via the phosphorylation

of SIN1 T86, using an mTORC2 in vitro kinase assay with exog-

enous (inactive) Akt as the substrate. mTORC2 complexes

obtained from cells pretreated with the Akt inhibitor MK2206,

but not rapamycin, had impaired mTORC2 activity and a

concomitant block of SIN1 T86 phosphorylation (Figure 6F). In

this assay, we used the mTOR inhibitor LY294002 as a control

by adding the compound directly to the in vitro kinase reaction

to block mTORC2 activity.

We further explored whether the phosphorylation of SIN1

T86 alone was sufficient to directly affect the growth factor-

enhanced activity of mTORC2 by isolating the complex from

the SIN1�/� MEFs rescued with SIN1 WT, T86A, and T86E

mutants and performing in vitro kinase assays.mTORC2 isolated

from cells containing SIN1 T86A displayed an impaired growth

factor increase in kinase activity (Figure 6G). Moreover, overex-

pression of the phosphomimetic mutant SIN1 T86E resulted in

enhanced, and growth factor-independent, mTORC2 kinase

activity (Figure 6G). These data indicate that phosphorylation

of SIN1 T86 results in a substantial and direct activation of

mTORC2 kinase activity.

We propose the following model for the activation of mTORC2

(Figure 6H): (1) growth factors activate PI3K, causing accumula-

tion of PIP3 at the PM; (2) Akt translocates to the PM where its

activity is increased by phosphorylation at T308 by PDK1; (3)

mTORC2, probably via the pleckstrin homology (PH) domain in

SIN1 (Pan andMatsuura, 2012; Schroder et al., 2007), also trans-

locates to the PM, and SIN1 is phosphorylated on T86 by Akt,

resulting in activation of the complex; (4) active mTORC2 phos-

phorylates Akt on S473, enhancing and stabilizing the activity of

the kinase; and (5) activated Akt continues to phosphorylate

other substrates.

DISCUSSION

Here we provide a quantitative atlas of dynamic protein phos-

phorylation and show that these large-scale phosphoproteomics

data can be integrated using in silico approaches to delineate

key topological features of this essential signaling network.

These data serve as a resource for future hypothesis-driven

research into both known and currently poorly defined actions

of insulin and other growth factors that converge upon signaling

nodes like Akt that are central to insulin action.

While dysregulated signaling networks downstream of

RTKs are a key feature of diabetes, cardiovascular disease,

and many types of cancer, there is a paucity of systems-wide
by insulin stimulation (200 nM, 10min) and blocked by pretreatment of cells with

added directly to the in vitro kinase assay.

homutants (T86A, T86E) displays differential growth factor-stimulated kinase

6E phosphomimetic mutants.

y Akt phosphorylation of SIN1. See also Figure S6.
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quantitative data delineating signaling networks in healthy cells.

Hence, the data described herein brings us a step closer to a

more complete understanding of disease phenotypes. It is

apparent, for example, that the scale of growth factor-regulated

protein phosphorylation, in terms of both functional and

temporal distribution, is much greater than previously appreci-

ated. This underscores the importance of classifying phosphor-

ylation data using context-specific systems. Therefore, the

current study, which focuses on insulin signaling in the adipo-

cyte, will provide an ideal framework with which to move toward

more complex signaling networks in tissues comprising multiple

different cell types and multiple intercellular communication

networks.

Our data highlight the temporal dimension in protein phos-

phorylation as a key indicator of functional behavior and its

modification by extrinsic cues such as growth factors, including

insulin. Two major nodes regulated by insulin are mTOR and

Akt, each of which controls distinct biological endpoints such

as nutrient sensing, protein synthesis, metabolism, and cell

survival. In our quantitative phosphoproteome, we observed

substantial temporal resolution in the activation of these two

pathways. The activation of Akt involves at least eight molecular

events consisting of changes in protein localization, protein-

protein interaction, and conformation. Despite this, Akt was fully

active within 30 s of insulin stimulation, while the activation

of mTORC1 was markedly delayed. The resolution of Akt and

mTORC1 activity (Figures 4B and 4C) is in contrast to the

temporal clustering of Akt and upstream elements (e.g., IR and

IRS). While it might be predicted that mTORC1 activation occurs

after Akt since mTORC1 is downstream of Akt, the extent of the

observed temporal latency is not intuitively obvious from the

biochemistry of mTORC1 activation (Laplante and Sabatini,

2012). Moreover, recent studies have demonstrated that, in

adipocytes, mTORC1 is activated at the same location in the

cell as Akt (Bridges et al., 2012), making it unlikely that this

temporal distinction arises from spatial segregation.

To illustrate the utility of these data for the identification of

kinase-substrate relationships, we employed amachine learning

approach utilizing SVMs. We demonstrated that one of the

predicted substrates, SIN1, is a physiological target of Akt.

Moreover, we found that the site-specific phosphorylation of

SIN1 T86 is responsible for the direct activation of mTORC2

that occurs in response to growth factors. This is intriguing since

mTORC2 is typically considered to be upstream of Akt, as it

phosphorylates Akt at the hydrophobic motif (Sarbassov et al.,

2005), thereby increasing the activity of the kinase (Alessi

et al., 1996). Therefore, our data provide mechanistic insight

into the acute activation mechanisms of mTORC2 and the archi-

tecture of the Akt-mTORC2 signaling network. Previously it was

known that, in response to growth factors, Akt translocates to

the PM and is activated by PDK1 phosphorylation of Akt at

T308 and mTORC2 phosphorylation of Akt at S473 (Figure 4D).

Our data reveal that Akt is intimately involved in a positive

feedback loop with mTORC2. We demonstrate that by phos-

phorylating mTORC2 on SIN1 T86, Akt enhances the activity of

mTORC2, which in turn results in increased feedback phosphor-

ylation onto Akt (Figure 6H). This model unifies the growth factor-

dependent activation of Akt with that of mTORC2 through an

Akt-dependent positive feedback process, providing a more
1018 Cell Metabolism 17, 1009–1020, June 4, 2013 ª2013 The Autho
complete picture of the activation mechanisms of both mTORC2

and Akt.

Here we have highlighted only a subset of the biological pro-

cesses that are encapsulated in our data. A cursory analysis

reveals numerous other important pathways that are likely to

be regulated by insulin, as well as other RTKs that invoke

the PI3K/Akt-mTOR pathways. Hence, we expect that many

additional cellular targets of insulin will emanate from studies

of this kind.
EXPERIMENTAL PROCEDURES

Cell Culture and Peptide Preparation

3T3-L1 fibroblasts were triple SILAC labeled (Ong and Mann, 2006), differen-

tiated into adipocytes, and used on days 10–12 of differentiation. All large-

scale MS experiments were performed in three biological replicates. For the

inhibitor screens, adipocytes were serum starved then treated with 10 mM

MK2206, 50 mM LY294002, or vehicle (DMSO) for 30 min followed by

100 nM insulin or vehicle for 20min at 37�C (Figure 1A). For time course exper-

iments, adipocytes were serum starved then stimulated with vehicle (PBS) or

100 nM insulin for 15 s, 30 s, 1 min, 2 min, 5 min, 10 min, 20 min, or 60 min,

and pooling of SILAC-labeled cells resulted in four groups of cells (Figure 1B).

Following mixing, proteins were acetone precipitated, resuspended in urea,

reduced, alkylated, and digested with endoproteinase Lys-C followed by

trypsin. Peptides were desalted and fractionated by strong anion exchange

(SAX) (Wi�sniewski et al., 2009) for total-proteome analysis or by strong cation

exchange (SCX) and TiO2 for phosphopeptide analysis (Larsen et al., 2005;

Olsen et al., 2006). Eluted peptides were dried under vacuum before being

loaded onto in-house packed C18 stop and go extraction (STAGE) tips.

MS

Eluted peptides were resuspended in MS loading buffer (2% MeCN, 0.3%

trifluoroacetic acid [TFA]) and loaded onto a 20 cm column with a 75 mM inner

diameter, packed in house with 3 mM C18 ReproSil particles (Dr. Maisch

GmbH). An EASY-nLC system was connected to the mass spectrometer

with a nanospray ion source, and peptides were separated with a binary buffer

system of 0.5% acetic acid (buffer A) and 80% MeCN plus 0.5% acetic acid

(buffer B), at a flow rate of 250 nL/min. Peptides were analyzed on an Orbitrap

Velos or Q Exactive benchtop Orbitrap mass spectrometer (Thermo Fisher

Scientific). Up to 10 peptides on the Orbitrap Velos or 15 on the Q Exactive

were fragmented in the HCD cell and analyzed with high resolution (7,500 at

400 m/z) in the Orbitrap detector. Dynamic exclusion and lock-mass were

enabled (m/z 445.120025).

MS Data Analysis

Raw mass spectrometry data were processed using the MaxQuant software

(Cox and Mann, 2008) version 1.2.3.3, using the default settings with minor

changes (see Supplemental Experimental Procedures). Database searching

was performed using the Andromeda search engine integrated into the Max-

Quant environment (Cox et al., 2011) against the mouse international protein

index (IPI) database v3.68, concatenated with known contaminants as well

as the reversed sequences of all entries. Protein, peptide, and site FDRs

were controlled at a maximum of 1%.

Statistical Analysis

Data analyses were performed using Microsoft Office Excel, the R software

environment, and the bioinformatics platform Perseus (Max Planck Institute

of Biochemistry, Munich). Gene ontology (GO) annotation enrichment analysis

was performed in Perseus, and significance was assessed using Fisher’s

exact test. The whole quantified phosphoprotein data set was used as a back-

ground data set, and the Benjamini-Hochberg FDR method was used for

multiple hypotheses testing (FDR < 0.02). Motif analysis was performed using

iceLogo (Colaert et al., 2009), using percent difference for scoring, a signifi-

cance threshold of 0.01, and a sequence window of 13 amino acids surround-

ing the phosphorylated residues of class I insulin-regulated phosphorylation
rs
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sites (Table S1). The non-insulin-regulated phosphoproteome was used as a

reference data set.

Kinase Substrate Prediction using Machine Learning

The workflow of the analysis is shown in Figure S4A. An ensemble of SVMs

were trained using positive training sets curated from the literature to recog-

nize Akt, mTORC1, and PKA substrates, using features extracted from the

combined analysis of our large-scale phosphoproteomics studies. The fold

ratios for each phosphorylation site over the 9 time points were scaled

between 0 and 1. The area under the curve (AUC) for each phosphorylation

site was calculated (Figure S4B) and subjected to polynomial curve fitting

(order = 2). These were used as descriptive features for SVM training. Other

features used for SVM training were the average fold ratios for each site across

all time points, the fold ratios with insulin in the presence or absence of

inhibitors, and the position-specific scoring matrix of amino acids surrounding

the phosphorylation site (sequence window of 13 amino acids).

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, four tables, and Supplemental

Experimental Procedures and can be found with this article online at http://dx.

doi.org/10.1016/j.cmet.2013.04.010.
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Figure S1. Large-Scale Mass Spectrometry-Based Quantification of the Insulin-Regulated 

Phosphoproteome, Related to Figure 1 

(A) Distribution of database search engine (Andromeda) scores for phosphopeptides sequenced and (B) 

measured mass error for all sequenced phosphopeptides and non-phosphopeptides. (C) Overall distribution 

of singly (1P), doubly (2P), triply (3P) or higher phosphopeptides identified in all experiments. (D) 

Distribution of phosphorylation-site localization probabilities for all phosphorylation sites detected in this 

study (37,248 sites), and the proportion of Serine, Threonine and Tyrosine amino acids phosphorylated in 

phosphopeptides with high site-localization confidence (Class I phosphorylation sites). 

   



 

 

Figure S2. Comparison of Phosphorylation Data Sets from this Study and a Large-Scale Mouse-

Tissue Phosphoproteome Study, Related to Figure 1 

(A) Overlap of phosphoproteins between our dataset and a large mouse tissue phosphoproteome dataset 

(Huttlin et al., 2010) comparing all 9 tissues, or only brown fat tissue. (B) Overlap of phosphorylation sites 

between the two phosphoproteome datasets, determined using a sequence window of 13 amino acids 

surrounding phosphorylated residue. 

   



 

Figure S3. Unsupervised Clustering of Dynamic Phosphorylation Profiles in Response to Insulin, 

Related to Figure 4 

Temporal data spanning 9 time-points was normalized (mean = 0, SD = 1) and assigned to 18 clusters using 

fuzzy c-means clustering. The number of phosphorylation sites in each cluster is indicated below each 

cluster letter. The number of phosphorylation sites in each cluster is indicated below each cluster letter. 

Temporal profiles were coloured by its membership score to the cluster (see color-membership key). The 

relationship between positively regulated clusters a-g and the Area Under the Curve (AUC) for each cluster 

was assessed using Fisher exact test (FDR < 0.01 after Benjamini-Hochberg correction). 



 

Figure S4. In Silico Methods for Classification of Phosphoproteomics Data and Prediction of Kinase 

Substrates, Related to Figure 5 

(A) Flowchart depicting the computational prediction of kinase substrates using integrated 

phosphoproteomics data sets. The MK2206 and LY294002 screens as well as the large-scale time-course 

phosphoproteome were used as the training data. An ensemble of Support Vector Machines (SVMs) were 

trained using a selected group of known substrates for Akt, mTOR and PKA as positive training sets, while 

negative training sets were created by repeated random sampling from the training data. SVMs were then 

used to classify the entire phosphoproteome dataset, and predicted substrates were ranked by their 

substrate prediction scores and delta-scores. Features used for SVM training were designed to capture 

three properties of substrate phosphorylation including magnitude, temporal profile, and primary amino-acid 

sequence. (B) The area under the curve (AUC) was calculated for each temporal profile and used as a 

feature for machine learning approach. AUC is a useful descriptive feature for substrate rates. Several 

substrates belonging to the Akt- (AUC 0.60-0.9) and mTOR-pathways (AUC 0.4-0.6) are indicated. 

   



 

Figure S5. Prioritization of Candidate Kinase Substrates Predicted by Machine Learning, Related to 

Figure 5 

(A) Phosphorylation sites quantified in the time-course were ranked by their substrate prediction scores and 

delta scores for Akt (Blue), mTOR (Pink) and PKA (Orange). The sites with the highest scores were ranked 

using Pareto fronts. (B) Normalized temporal profiles of the top 50 predicted for Akt, mTOR and PKA 

substrates. Shaded area indicates SD and the dashed line is the average.  

   



 

Figure S6. Identification of SIN1 as a Direct Akt Substrate, Related to Figure 6 

(A) Time-course of SIN1 Thr86 phosphorylation in insulin-stimulated HEK-293T cells. Cells transiently 

expressing Flag-SIN1 or empty vector were serum starved for 2 h followed by stimulation with insulin (100  

nM) for the indicated durations. Flag-SIN1 was immunoprecipitated from cell lysates using the Flag antibody. 

Immunoprecipitated proteins and total cell lysates were analyzed by immunoblotting using the indicated 

antibodies. (B) mTORC2 complex formation is not affected by SIN1 Thr86. mTORC2 was 

immunoprecipitated from SIN1 -/- MEF cells stably expressing SIN1wild type (WT) or SIN1 phospho-mutant 

(T86A) and samples were analysed by immunoblotting for components of mTORC2 complex. (C) Signalling 

in SIN1 -/- MEF cells rescued with SIN1 phospho-mutants. Expression of SIN1but not SIN1 T86A mutant in 

SIN1 null MEFs rescues mTORC2-dependent signalling. SIN1 wild type (WT) or phospho-mutants (T86A, 

T86E) were expressed in SIN1 -/- MEFs, and cells selected by FACS as described in Materials and 

Methods. Cell lines were serum starved for 2 h, stimulated with insulin (100 nM, 10 min) and samples 

analysed by immunoblotting. 

   



Supplemental Experimental Procedures 

Cell Culture and Peptide Preparation 

3T3‐L1 fibroblasts were passaged for six doublings in SILAC DMEM containing three different 

isotopic versions of arginine and lysine, supplemented with 10% dialyzed FCS, generating ‘triple‐labelled’ 

SILAC cells as described (Ong and Mann, 2006). SILAC labelled cells were differentiated into adipocytes and 

used on day 10‐12 of differentiation. All large‐scale MS experiments were performed in three biological 

replicates with label switching. For the inhibitor screens, adipocytes were serum‐starved, then treated with 

either 10 µM MK2206, 50 µM LY294002, or vehicle (DMSO) for 30 min, followed by 100 nM insulin or 

vehicle for 20 min at 37°C (Figure 1A). For time‐course experiments, adipocytes were serum starved then 

stimulated with vehicle (PBS) or 100 nM insulin for 15 sec, 30 sec, 1 min, 2 min, 5 min, 10 min, 20 min, or 

60 min, and pooling of SILAC‐labelled cells resulting in four groups of cells (Figure 1B). Unstimulated 

(“starved”) cells were present in each group to act as an internal SILAC standard, allowing the generation of 

temporal profiles. Following mixing, proteins were acetone precipitated, resuspended in urea, reduced, 

alkylated, and digested with endoproteinase Lys‐C followed by trypsin. Peptides were desalted using 

SepPak tC18 cartridges, and fractionated by Strong Anion Exchange (SAX) for total‐proteome analysis or 

Strong Cation Exchange (SCX) and TiO2 for phosphopeptide analysis. 

 

Peptide Fractionation and Phosphopeptide Enrichment 

For the total proteome analysis, peptides were fractionated by SAX in pipette tip format, as previously 

described (Wisniewski et al., 2009). For the phosphoproteome analysis, peptides were fractionated by SCX 

chromatography followed by TiO2 enrichment (Larsen et al., 2005; Olsen et al., 2006). Briefly, peptides 

were resuspended in 2 mL 30% MeCN / 0.1% TFA and injected onto an Akta Purifier with a 1 mL Resource S 

column (GE Healthcare) and fractionated with a linear gradient of 100% buffer A (5 mM KCl, 30% MeCN, 5 

mM KH2PO4, 0.1% TFA) to 30% buffer B (400 mM KCl, 30% MeCN, 5 mM KH2PO4, 0.1% TFA) in 30 min. 

Fractions including the flow‐through were collected and pooled based on absorbance at 215 and 280 nm. 

Phosphopeptide enrichment was performed as described (Larsen et al., 2005; Olsen et al., 2006). Briefly, 

Titansphere material (GL Sciences) was suspended in 80% MeCN / 1% TFA containing 30 mg/mL 2,5‐

dihydroxybenzoic acid, and 3‐4 mg was added directly to the SCX fractions. Beads were incubated for 30 

min at room temperature with rotation, and collected by centrifugation (5,000 x g, 1 min). Titanium 

dioxide beads were washed three times with 150 µL 60% MeCN / 1% TFA, and transferred to a 200 µL 

pipette tip containing a plug of C8 (Empore) material. Phosphopeptides were eluted from the beads with 

NH4OH / 40% MeCN and dried to near completeness under vacuum before being loaded onto in‐house 

packed C18 STAGE tips. 

 

 



Mass Spectrometry 

Eluted peptides were resuspended in MS loading buffer (2% MeCN, 0.3% TFA) and loaded onto a 20 cm 

column with 75 µM inner diameter, packed in‐house with 3 µM C18 ReproSil particles (Dr Maisch GmbH). 

An Easy‐nLC system was connected to the mass spectrometer using an 1.9‐2.3 kV nano‐spray ion source, 

and peptides were separated with a binary buffer system of 0.5% acetic acid (buffer A) and 80% MeCN / 

0.5% acetic acid (buffer B) using linear gradients of buffer B from 5% to 35% over 130 min for 

phosphoproteome or 240 min for total proteome analysis, at a flow rate of 250 nL/min. Peptides were 

analysed on an Orbitrap Velos or Q‐Exactive benchtop Orbitrap mass spectrometers (Thermo Fisher 

Scientific). Up to 10 peptides on the Orbitrap Velos or 15 on the Q‐Exactive were selected with an isolation 

window of 2 Th, fragmented in the HCD cell and analysed with high resolution (7500 at 400 m/z) in the 

Orbitrap detector. Dynamic exclusion was enabled with a duration of 60 s and a mass window of ±7ppm. 

Lock‐mass was enabled using 445.120025. 

 

Data Analysis 

Raw mass spectrometry data were processed using the MaxQuant software (Cox and Mann, 2008) 

version 1.2.3.3 using the default settings with minor changes: Oxidised Methionine (M), Acetylation 

(Protein N‐term) and Phospho (STY) were selected as variable modifications, and Carbamidomethyl (C) as 

fixed modification, as well as triple SILAC labels (Arg 0/Lys 0, Arg 6/Lys 4, and Arg 10/Lys 8). A maximum of 

two missed cleavages was permitted, 10 peaks per 100 Da, MS/MS tolerance of 20 ppm, and a minimum 

peptide length of 6. The “matching between runs” algorithm was enabled with a time window of 2 min to 

transfer identifications between adjacent fractions, only for samples analysed using the same nanospray 

conditions. Database searching was performed using the Andromeda search engine integrated into the 

MaxQuant environment (Cox et al., 2011) against the mouse IPI database v3.68, concatenated with known 

contaminants and reversed sequences of all entries. Protein, peptide and site FDR thresholds in MaxQuant 

were each set to a maximum of 1%. Relative protein abundances were estimated using the “intensity‐

based absolute quantification” (iBAQ) algorithm (Schwanhausser et al., 2011) integrated into the 

MaxQuant environment. Briefly, protein intensities are derived as the sum of all identified peptide 

intensities (maximum detector peak intensity of the peptide elution profile including all isotope peaks). 

Protein intensities are then divided by the number of theoretically observable peptides (fully tryptic 

peptides, 6‐30 amino acids long). The resulting “iBAQ” intensities were log‐transformed and used to rank 

the abundance of detected proteins (Table S3).  

 

Prediction of Kinase Substrates 

The workflow of the analysis is shown in Figure S4. An ensemble of SVMs (Ben‐Hur et al., 2008) were 

trained using positive training sets curated from the literature to recognise Akt, mTOR and PKA substrates, 



based on features extracted from the combined analysis of our large‐scale phosphoproteomics studies. For 

positive training of these kinase‐substrate prediction classifiers, 22, 28 and 17 substrates curated from the 

literature were used for the kinases respectively. Negative training sets were created by iteratively 

sampling balanced training sets from the residual data. Because the number of positive training examples 

is far smaller than the number of negative examples, the class distribution is inherently highly imbalanced. 

Therefore we employed an ensemble approach by repeated random sampling from the negative training 

examples 10,000 times, each time matching the number of positive training examples. This ensemble of 

balanced base classifiers incorporates diverse aspects of negative examples while retaining the sensitivity 

to positive examples. The final predictions were made by additively combining the prediction probabilities 

from all base classifiers. 

The fold ratios for each phosphorylation site over the 9 time points were scaled between [0, 1] and area 

under the curve (AUC) (Figure S4B) and polynomial curve fitting (order = 2) was performed for each 

phosphorylation site and these were used as descriptive features for the SVM. Other features used for 

SVM training were the average fold ratios for each site across all time points, the fold ratios with insulin 

and insulin +PI3K or Akt inhibitors, and the position‐specific scoring matrix of amino acids surrounding the 

phosphorylation site (sequence window 13 amino acids). 

To determine if the prediction score was substantially higher for predicted kinase than the other 

kinases, we calculated a ‘delta score’ (kdelta) for each phosphorylation site by subtracting the score received 

by classification for the next highest kinase (knpredict) from the prediction score (kpredict): 

	 	 	–		 	

A Pareto ranking approach was subsequently used to objectively incorporate both ensemble prediction 

scores and delta scores for prioritising potential Akt, mTOR and PKA substrates for future follow up 

molecular characterisation (Figure S5A). 

Ensemble prediction performance was estimated by stratified 10‐fold cross validation to form 

partitioned testing and training data sets. 	

	 	 	

	 	 	

Since it is not known which substrates are true positives other than the manually curated substrates we 

treated all phosphorylation sites not included in the curated positive substrates as negatives. Assuming 

that other positive substrates have similar prediction scores as those of curated substrates, this enables us 

to estimate sensitivity and a lower bound of specificity (Figure S5C). 

 

mTORC2 In Vitro Kinase Assay 

Cells at 75‐80% confluency were serum starved overnight, stimulated with insulin (100 nM) for 10 

minutes, rinsed with ice‐cold PBS and lysed in CHAPS IP buffer (40 mM HEPES pH 7.5, 120 mM NaCl, 1 mM 



EDTA, 0.3% CHAPS, 10 mM Na‐pyrophosphate, 10 mM β‐glycerophosphate, 50 mM NaF, Complete EDTA‐

free protease inhibitors) with rotation at 4°C for 15 minutes, and spun at 16,000 xg for 15 minutes. Protein 

content was determined by Bradfords assay and samples diluted in CHAPS IP buffer to 1 mg/mL. 4 uL anti‐

Rictor antibody was added to each sample and incubated with gentle rotation for 90 minutes at 4°C, 

followed by 15 uL protein G‐sepharose for a further 60 minutes. Immunoprecipitates were were washed 4 

times with CHAPS IP buffer, and 1 time with kinase buffer (25 mM HEPES pH 7.5, 100 mM potassium 

acetate, 1 mM MgCl2). After washing the beads were dried and 45uL kinase buffer was added to each 

containing inactive Akt (500 ng) and 500 uM ATP. Kinase reaction was performed with mixing at 37°C for 30 

minutes, terminated immediately by the addition of 2x SDS sample buffer and analysed by 

immunoblotting. 

 

Akt In Vitro Kinase Assay 

HEK293 cells were transiently transfected with HA‐SIN1 wiltype or HA‐SIN1 T86A. Cells were serum 

starved overnight, harvested in RIPA buffer (40 mM HEPES pH 7.5, 150 mM NaCl, 2 mM EDTA, 1% Sodium 

Deoxycholate, 1% NP40, 0.1% SDS, 10 mM Na‐pyrophosphate, 10 mM β‐glycerophosphate, 50 mM NaF, 

Complete EDTA‐free protease inhibitors), lysed for 20 minutes and centrifuged at 16,000 xg for 15 minutes 

at 4°C. Protein content was determined by BCA assay and samples diluted to 1 mg/mL. 20 uL anti‐HA‐

sepharose was added to 1 mg protein and immunoprecipitated at 4°C for 3 hours with gentle rotation. 

Immunoprecipitates were washed 4x with RIPA buffer, and 1x with kinase buffer. After washing the beads 

were dried and 45uL kinase buffer was added to each containing active Akt (200 ng) and 250 uM ATP. 

Kinase reaction was performed with mixing at 37°C for 30 minutes, terminated immediately by the 

addition of 2x SDS sample buffer and analysed by immunoblotting. 
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